INTERACTIVE CONSTRAINT-BASED SEARCH AND REPLACE

David Kurlander
Seven Feiner

Department of Computer Science
Columbia University
New York, NY 10027

E-Mail: {djk, feiner} @cs.columbia.edu

ABSTRACT

We describe enhancements to graphical search and replace
that allow users to extend the capabilities of a graphical
editor. Interactive constraint-based search and replace can
search for objects that obey user-specified sets of constraints
and automatically apply other constraints to modify these
objects. We show how an interactive tool that employs this
technique makes it possible for users to define sets of
constraints graphically that modify existing illustrations or
control the creation of new illustrations. The interface uses
the same visual language as the editor and allows users to
understand and create powerful rules without conventional
programming. Rules can be saved and retrieved for use
alone or in combination. Examples, generated with a work-
ing implementation, demonstrate applications to drawing
beautification and transformation.

KEYWORDS: Constraint specification, interactive tech-
niques, demonstrational techniques, editor extensibility,
graphical editing.

INTRODUCTION

When repetitive changes must be made to a document, there
are several approaches to consider. The changes can be
performed by hand, which is tedious if there are many
modifications to make or if they are complex to perform.
Custom programs can be written to perform the changes
automatically, but this requires programming skill, and
familiarity with either the editor’s programming interface or
file format. Some editors, particularly text editors, allow
macros to be defined by demonstration. These macros do

1of 10

not however extend easily to domains, such as graphical
editing, where it is difficult to assign an unambiguous mean-
ing to each interaction.

As most users of text editors are keenly aware, another
approach to making repetitive changes involves the use of
search and replace. Previously we adapted this technique to
the 2D graphical editing domain by building a utility called
the MatchTool [8]. Using the MatchTool, we could search
for all objects matching a set of graphical attributes, such as
aparticular fill color, line style, or shape, and change either
these or a different set of attributes. However, there was a
large class of search and replace operations that MatchTool
could not perform. There was no way to search for a partic-
ular geometric relationship, because shape-based searches
matched on the compl ete shape of the pattern. For example,
MatchTool could search for triangles of a particular shape,
but not all right triangles. Similarly, shape-based replace-
ments would substitute the complete shape of the pattern
without any way of preserving particular geometric relation-
shipsin the match.

By adding constraints to the search and replace specification
we now have better control of which features are sought and
modified. Many complex geometric transformations can be
expressed using constraint-based search and replace. For
example, the user can now search for all pairs of nearly
connected segments in the scene, and make them connected,
or search for connected Bezier curves and enforce tangent
continuity between them. All text located in boxes can be
automatically centered, or boxes can be automatically
created and centered around existing text. Lines parallel
within a chosen tolerance can be made parallel. These
object transformations can be used, for example, to beautify
roughly drawn scenes, and enforce other design decisions.

Several other systems use automatic constraint generation
for scene beautification. Pavlidis and Van Wyk’s illustration
beautifier searches for certain relationships, such as nearly
aligned lines or nearly coincident vertices, and enforces

Reprinted from CHI ‘92 Proceedings, May 1992, Monterey, CA, 609-618.

these relationships precisely [17]. Myers' Peridot, an inter-
active system for designing new interface widgets, uses a
rule set to find particular relationships between pairs of
scene objects and establish new constraints among them
[13]. Our system differs from these in that the constraint
rules can be defined by the system’s users, thereby provid-
ing a powerful new form of editor extensibility [9]. Rules
are defined by direct manipulation [19], using the same
techniques that are used for editing ordinary scenes.
Furthermore, users can view the constraint rules graphically,
in the same visual language as the rest of the editor inter-
face. Aswill be described later in this paper, simple demon-
strational techniques [14] help in defining these rules.

The ability to create custom rules is particularly important,
now that methods have been developed to allow the user to
define new types of constraints with little or no program-
ming. For example, Borning’s ThingLab allows new
constraint classes to be defined using graphical techniques
[2], and several recent systems allow new constraints to be
entered via spreadsheets [5][11][15]. If the system designers
cannot foresee every constraint that may be necessary, they
clearly cannot provide for every transformation rule based
on these constraints.

Search and replace is also a particularly easy way to add
constraints to similar sets of objects. Sutherland’s Sketch-
pad [20] introduced instancing to facilitate the same task.
Instancing, though an extremely useful technique with its
own benefits, requires that the user know, prior to object
creation, the types of constraints that will be used. Also,
many instancing systems place objects in an explicit hierar-
chy, not allowing one object to be a member of two unre-
lated instances. Constraint-based search and replace has
neither of these limitations.

Nelson's Juno, a two-view constraint-based graphical
editor, allows constraints to be added either in a WY SI-
WY G view, or aprogram view, resulting in a procedure that
can be parameterized and applied to other objects [16]. Our
search and replace rules are implicit procedures that are
specified through a direct manipulation interface. The
procedures are parameterized through the search portion of
the rule, which also specifies the criteria that an object must
match to be avalid argument. When areplacement ruleisto
be applied many times, the search mechanism reduces the
burden by finding appropriate argument sets automatically.

Constraint rules have been used by several researchersin
human-computer interaction. Weitzman’s Designer was
supplied with a set of rules to enforce design goals [22].
Peridot’s rules, written in Interlisp, infer geometric
constraints among objects in an interface editor. Maulsby’s
MetaM ouse graphical editor infers graphical procedures by
demonstration [12]. Each program step is associated with a

20f 10

set of preconditions and postconditions to be met, which can
include “touch” constraints. Vander Zanden developed a
method of specifying graphical applications using constraint
grammars to isolate the visual display from the data struc-
tures[21].

We have implemented constraint-based search and replace
as part of MatchTool 2, an application that works in
conjunction with the graphics and interface editing modes
of the Chimera editor [10]. Here we discuss the motivation,
interface, and implementation of constraint-based search
and replace. We introduce the capabilities of our system and
its interface through a series of examples. Next we discuss
the algorithm and implementation. The last section presents
our conclusions and planned future work. All figuresin this
paper are working examples, generated by Chimera's Post-
Script output facility.

EXAMPLE 1: MAKING A NEARLY RIGHT ANGLE RIGHT
Suppose that we would like to specify that all pairs of
connected lines nearly 90 degrees apart should be precisely
90 degrees apart. Figure 1 shows MatchTool 2's interface
for doing this.

Tyl MatchTool 2

\ |
Fetch) Fitv) CP)|| Fetch) Fitv) CP)
I |
Search ¥) Yes) No)

Properties Search Replace

Object class Zr ZT ChangeAll ¥)

Curve type ﬂ Zr

Shape _ _ Gran: Y| Anywhere

Fill color _ _ Shape tol: f[————
Line color | _ Rotation invariance: _|
Line width _ _ Scale invariance: [
Line dash _ _ Polarity: _
Line join _ o Context sensitivity: |
Line cap _ _

Text string | | Exclude match: _
Text font [[Permanence:

To iamm | Fixed: Y| Permanent
Constraints ¥ v Set: Y| Permanent

FIGURE 1. The MatchTool 2 interface.

At the top are two graphical editor panes in which objects
can be drawn directly or fetched from any editor scene. The
Search Pane on the left contains the search objects, and the
Replace Pane on the right contains the replacement objects.
Below these and to the left are two columns of checkboxes,
the Search and Replace Columns. These specify which
graphical properties of the objectsin the Search and Replace
Panes will be looked for or substituted into the match. Here
we have selected “Object class”, “Curve type” and
“Constraints’ from both the Search and Replace Columns.
Starting at the middle right of the window is a set of buttons
(“Search”, “Yes’, “No”, and “ChangeAll”) that invoke the
search and replace operations.

When the “ Constraints” box is checked in the Search
Column, MatchTool 2 searches the scene for relationships
expressed by the constraints in the Search Pane. The scene
may contain constraints too, but the search ignores these.
For example, there are two constraints in the Search Pane of
Figure 1. The zero length distance constraint connects an
endpoint of each line. It indicates that the MatchTool should
look for two segments that touch at their endpoints. The 90
degree angle constraint between the two lines specifies that
the lines matched must meet within a given tolerance of a
right angle. Constraints are shown in these figures as they
appear in the editor, and the display of individual constraints
can be turned on and off from a constraint browser.

TOLERANCES BY EXAMPLE

We intend that the pattern should match all angles that are
roughly 90 degrees, so we need away to specify the toler-
ance of the search. We use a simple demonstrational tech-
nigue. When system constraints are turned off, objects can
be moved from their constrained positions. The user shows
how far off a particular relation can be by demonstrating it
on the search pattern. In the above example, the angle match
will be 90 + 20 degrees, since the angle drawn is 110
degrees, and the constraint specifies 90 degrees. To repre-
sent an asymmetric range (e.g. 90 +0 —20 degrees), we can
simply convert it into a symmetric range about a different
value (e.g. 80 = 10 degrees). In the search specified by
Figure 1, the distance constraint must be satisfied exactly
since the endpoints are coincident in the Search Pane. We
also provide an option that lets the user arrange the search
pattern into several configurations, and takes the maximum
deviation.

When we were first devel oping the system, we used Match-
Tool 2's “Shape tolerance” slider for specifying constraint
tolerances. The results were quite unsatisfactory because
this control adjusted the tolerances of all the constraints
simultaneously. Also, there was no visual clue relating how
far off a constraint could be for a given position of the
dlider.

3of 10

SEARCH AND REPLACE PARAMETERS

In the lower right hand corner of Figure 1, underneath the
“ChangeAll” button, is a set of controls that affect how the
search and replace is performed. Most of the parameters
from the original MatchTool are still useful, but others have
been added as well. The new controls appear at the bottom
of Figure 1, starting with “Exclude match”.

Match Exclusion

In the original MatchTool, scene objects that match the
pattern are excluded from future matches. When dealing
with constraints, this behavior is usually undesirable. For
example, in our search for angles of nearly 90 degrees, we
do not want to rule out other potential matches involving
some of the same objects, since segments can participate in
multiple angle relationships. When “Exclude match” is
selected, scene objects can match at most onetimein a
single search. When it is not selected, scene objects can
match multiple times; however to insure that the search will
halt, no permutation of objects can match more than once.

Constraint Permanence

Just as constraints in the Search Pane indicate relationships
to be sought, constraints in the Replace Pane specify rela-
tionships to be established in each match. To establish the
relationship, MatchTool 2 applies copies of the replacement
congtraints to the match, and solves the system. Whether or
not constraints remain in the scene after the match is a user
option. The user has three choices. the constraints can be
removed from the match immediately upon solving the
replacement system, they can be removed after all the
replacements have been made, or they can be made perma-
nent. In the current example, it isimportant to choose one of
the latter two options. A segment can participate in multiple
angles, and if we delete the angle constraint immediately
upon making a replacement, a subsequent application of
constraints might destroy the established relationship. As
will be discussed later, there are two different classes of
constraints: fixed constraints and set constraints. The
permanence of each classis controlled independently.

e [@Re
L Y . N

FIGURE 2. Application of the rule to make right angles
out of nearly right angles. (a) The initial editor
scene; (b) The modified scene.

Before

With these parameters now set, we are ready to begin the
search. First we place the software cursor in the editor scene
shown in Figure 2(a), to indicate the window in which the
search should occur. Then we press the “ChangeAll” button
in the MatchTool 2 window. All of the 90 + 20 degree
angles become true right angles, as shown in Figure 2(b).

RULE SETS

Many constraint-based rules have wide applicability, so an
archiving facility is important. Once search and replace
rules have been defined, they can be saved in libraries, or
rule sets. We have built a utility for manipulating rule sets,
called the RuleTool, and itsinterface is shown in Figure 3.

RuleTool

A - Connect Nearly Connected Segments
A - Make Angle 90 Degrees
A - Make Segment Horizontal
A - Parallelize Nearly Parallel Lines
| A - Make Lines Coincident
Make Line Tangent To Circle Endpoint
Round an Angle
Make Connected Beziers Tangent
Put Arrowhead on Line

)
4| > | |4

—
File ¥) _Get) Put
Search) Yes) No)
1

(De)Activate)
ChangeAll)

Other ¥)
DoThatThere)

FIGURE 3. The RuleTool interface, a utility for
building libraries of rules.

The RuleTool contains a scrolling list, in which rules are
catalogued. Rules are initially defined through the Match-
Tool 2 interface, but can be loaded into the RuleTool. Once
in the RuleTool, a rule can be executed directly without
using the MatchTool 2 window at all. A single rule can be
selected and executed, or a set of activated rules can be
executed in sequence in the order listed (activated rules are
preceded with an “A”). The user can execute rules in the
RuleTool as a post-process, after the illustration has been
completed, or dynamically as objects are added or modified,
in the manner of Peridot. We refer to the latter mode as
dynamic search and replace. When a match is found, the
match is highlighted, and the name of the rule is displayed.
To invoke the rule, the user hitsthe “Yes' button, otherwise
“No”. Though in some cases it may be ambiguous which
selected object corresponds to which object in the rule, rule
executions can easily be undone if they have unexpected
results.

Figure 4 shows the results of executing the activated rules of

Figure 3 on arough drawing of a house. Figure 4(a) is the
initial drawing, and Figure 4(b) is the neatened version. The

4 0f 10

@] ®)]
/AN

N A
[0 0

| LU

FIGURE 4. Renovating a house. (a) The original
house; (b) The house after application of
the activated rules in the rule set of
Figure 3.

user explicitly accepted or rejected each of the matches. The
results have the flavor of a simple version of Pavlidis and
Wyk’s drawing beautifier. In contrast, however, all of the
rules used to neaten the drawing of the house were specified
interactively, by the user, with constraint-based search and
replace. These rules are simple rules and might have realis-
tically been pre-coded by the implementer. In the next two
examples we demonstrate more sophisticated tasks that
introduce other capabilities of the system.

EXAMPLE 2: MAKING A LINE TANGENT TO A CIRCLE
As the Gargoyle graphical editor was being developed at
Xerox PARC, several people proved their drafting prowess
by constructing letters from the Roman a phabet, following
the instructions described by Goines[4]. An example of this
isincluded in [1]. These constructions consist of a small
number of tasks that are repeated many times, some of
which are difficult to perform or require some geometric
knowledge. At the time, we tried our hand at one of these
constructions, and felt that a macro facility would be
extremely helpful, particularly since others had drawn the
letters before us and presumably would have written the
macros. One particular task that we found difficult was
making a line tangent to a circle through a particular point.
Here we show how this task can be encapsulated in a
constraint-based search and replace rule.

We would like to find lines with one endpoint nearly tangent
to acircle, and make that endpoint precisely tangent. The
search pattern is given in Figure 5(a). Since our system
currently has no tangency constraints, the user expresses the
relationship with two constraints. The distance between the
center of the circle and its other control point is constrained
to be the same as that between the center of the circle and
the near endpoint. This expresses that the endpoint lie on the
circle. As shown in Figure 5, this distance constraint is
represented in Chimera by a“D” connecting the two equi-
length vectors. Also, the angle formed by the line’s far
endpoint, its near endpoint, and the center of the circleis

constrained to be 90 degrees. (Actually, there are two lines
tangent to acircle through a point, and we should be looking
for —90 degree angles as well. After defining our rule we can
easily copy it and modify it to catch the second case). Since
we would like to match objects that nearly fulfill the given
constraints, we manipulate the objects to show how much
tolerance should be assigned to each constraint. Next, the
objects in the Search Pane are selected and copied into the
Replace Pane, shown in Figure 5(b).

Search @ Replace (b)

D[/4

FIGURE 5. Search Pane (a) and initial Replace Pane (b)
for line-endpoint and circle tangency.

One helpful test to find mistakes in the replacement specifi-
cation is to invoke the constraint solver on the replacement
pattern directly, and confirm that the objects adapt the
desired configuration. The reason why this works is that
typically the Search Pane is copied to the Replace Pane as
an initial step, and the Search Pane contains a valid match.
If the constraints already on these objects or subsequently
added to them bring the match into the desired configura-
tion, then they are fulfilling their job. The result of invoking
the constraint solver is shown in Figure 6. Though the line
has indeed become tangent to the circle at one endpoint, the
result is not exactly what we had in mind. The circle
expanded to meet the line, and both endpoints of the line
moved as well. We would like to refine our specification to
allow only the near endpoint of the line to move. To do this,
we undo the last command (using Chimera's undo facility),
putting the system back into its prior configuration, and
specify additional constraints, as explained next.

Replace

FIGURE 6. A test reveals a problem in the replacement
specification.

50f 10

FIXED CONSTRAINTS AND SET CONSTRAINTS

In this example there is a fundamental difference between
the constraints already specified and those still to be added.
The existing constraints specify relationships that must be
changed in the match—two distances must be made equal
and an angle must be set to 90 degrees. Additional
constraints are needed to fix geometric relationships of the
match at their original values. When we match a circle and
line in the scene, we want to fix both the circle and the far
endpoint of the line at their locations in the match, not their
locations in the Replace Pane. We refer to the first type of
constraint that sets geometric relationships to their valuesin
the Replace Pane, as set constraints. Constraints that fix
geometric attributes of the match at their original values are
called fixed constraints.

At first thought it may not be clear why fixed constraints are
necessary at all. One might think that only the geometric
relationships explicitly expressed by set constraints in the
Replace Pane should be changed in the match, and all other
relationships should remain invariant. However, thisis not
possible—changing some relationships automatically
results in others being changed as well. In the general case,
it isimpossible to make an endpoint of aline tangent to a
circle, keeping the center of the circle, its radius, the other
endpoint of the line, and the line’s slope and length fixed.
Given that some of these relationships must change, it is
important to alow the user a choice of which.

Fundamentally, the difference between set and fixed
constraints is the difference between checking and not
checking an attribute in the Replace Column of the Match-
Tool. During replacements, checked attributes come from
the Replace Pane, and unchecked attributes come from the
match. We considered adding entries to the Replace Column
for constraints specified in the Replace Pane, and using
checkboxes to specify the source of the constraint value.
However this would clutter the interface. Instead, we have
developed a simple demonstrational heuristic for determin-
ing whether the constraint should come from the match or
the Replace Pane, without the user having to reason about it.

The heuristic requires that the Search Pane contents initially
be copied into the Replace Pane, asisacommon first step in
specifying the replacement pattern. As aresult, the Replace
Pane contains a sample match. The user then adds
constraints to this sample match, transforming it into avalid
replacement. Conceptually, the user demonstrates the
constraints to be added to all matches by adding constraints
to this example.

We have two different interfaces for specifying constraints,
either of which may be used in aMatchTool 2 pane or in an
arbitrary scene. The user can select commands from the FIX
menu to fix relationships at their current value, or alterna-

tively they can specify a new value by using the SET menu
and typing the new value into a text input widget. It is
always easier to use FIX to make an existing relationship
invariant, and it is usually simpler to use SET rather than
manually enforcing the relationship and invoking FIX.
MatchTool 2 keepstrack of whether the user chooses FIX or
SET and creates fixed or set constraints accordingly.

This heuristic works well, but occasionally the user does not
take the path of least resistance or a relationship that we
would like to enforce is coincidentally already satisfied in
the sample. In these cases, the user may choose the wrong
interface or forget to instantiate the constraint at all. To
further test the constraint specification, constraint enforce-
ment can be temporarily turned off, the Replace Pane
objects manipulated into another sample match, and a Veri-
fication command executed. This command resets all fixed
constraints to their values in the new configuration, and the
constraint system is re-solved. If this second example recon-
figures correctly, it isagood indication that the specification
is correct. Fixed and set constraints are displayed differently
in the Replace Pane (fixed constraints are marked by an
asterisk), and the interface contains a command that
converts between types.

We now return to the task of making the near endpoint of a
line tangent to a circle, while moving only this endpoint.
After selecting both control points of the circle and the far
endpoint of the line, we select “Fix Location” from a menu.
We now solve the system in the Replace Pane, and it recon-
figures in the desired way, indicating the replacement speci-
fication is probably correct. When Chimerais given the
sample scene of Figure 7(a), our rule makes all line
endpoints that are nearly tangent to circles, truly tangent,
resulting in the scene shown in Figure 7(b).

DO THAT THERE

While for certain editing tasks it is useful to keep rules such
as line-circle tangency active, they can interfere at other
times by matching too frequently if the tolerances are high,
and by slowing down the editor. An extension to the current
system that would allow tolerances to be scaled down with-
out editing the rules would be helpful in the first case.
Another approach isto keep al but the most necessary rules
inactive, and require that the user explicitly invoke other
rules on an as-needed basis.

We provide two new facilities for this. In both versions of
the MatchTool, forward searches proceed from the position
of the software cursor towards the bottom of the scene. A
new “Do-That-There” command orders the search roughly
radially outward from the cursor. The search is invoked
using the rule selected in the RuleTool, and the MatchTool
interface is circumvented entirely. Asis the case with regu-

6 of 10

Before €)
After (b)
—
\ -

FIGURE 7. Applying the tangency rule. (a) a scene
containing lines and circles; (b) nearly
tangent lines made tangent.

lar MatchTool searches, the matches can be accepted or
rejected with “Yes” and “No” buttons. Another option
invokes a chosen rule only on selected objects, so for exam-
ple, selected quadrilaterals can be transformed into rectan-
gles by choosing the “Make Angle 90 Degrees’ rule from
the RuleTool, and invoking the RuleTool’s “ ChangeAll”
button.

EXAMPLE 3: ROUNDING CORNERS

As we were developing the first MatchTool, we accumu-
lated alist of editing tasks that would be facilitated by an
ideal graphical search and replace utility, and evaluated our
implementation by determining which tasks it could actu-
aly solve. A task suggested by Eric Bier wasto “round” 90
degree corners, that is, splice an arc of a given radius into
the angles while maintaining tangent continuity between the
arc and the lines. We perceived this as difficult, because we
thought it would be necessary to match on the shape of
pieces of segments. Though neither MatchTool implementa-
tion can perform this kind of matching, in our third example
we show how constraint-based search and replace can
perform the rounding task not only for 90 degree angles, but
for arbitrary ones. In this example, the replacement rule
adds a new, constrained object to the scene, which is atype
of replacement beyond the capabilities of other existing
beautifiers.

Search @ Replace (b)

Replace (©

FIGURE 8. Rounding corners. (a) Search Pane; (b) Replace Pane after splicing in an arc, and adding fixed location
and fixed slope constraints (labeled c* and s*, respectively); (c) Replace Pane after adding a 1/2 inch
distance constraint on the arc’s radius (the figure has been reduced); (d) Replace Pane after adding two

more angle constraints.

The search pattern shown in Figure 8(a), matches on two
segments, meeting at 90 degrees. Since the lines in the
Search Pane are part of a single polyline, and we have
chosen to search on “Object class”, “Curve type”, and
“Congtraints’, MatchTool 2 will match only pairs of joined
line segments that are part of the same polyline. We copy
the Search Pane contents into the Replace Pane, and delete
the angle constraint. The Replace Pane now contains a
representative match that we will, step by step, transform
into its replacement. Figure 8(b-d) shows the stepsin this
sequence.

First we fix the far endpoints at their current locations, since
they should not move, and we fix the slopes of the line
segments as well. We shorten the segments a bit, and splice
in an arc, producing the pane shown in Figure 8(b).

A few additional constraints still must be added. Though the
arc implicitly constrains both of its endpoints to be the same
distance from its center, we still need to constrain its radius.
Eventually we plan to allow numerical parameters for
replacement rules, but in this example we set the radiusto a
constant of one half inch. This constraint is shown in Figure
8(c). Finally, we add two additional constraints to ensure
tangency. The angle formed by the arc’s center, the near
endpoint of the top line, and the far endpoint, is set to —90
degrees, and the corresponding angle formed with the other
lineis set to 90 degrees. Thesefinal constraints are shownin

-

@ (b)

FIGURE 9. Rounding right angles in an F. (a) The
unrounded version; (b) After application of
our rounding rule. (This figure has been
reduced.)

7 of 10

Figure 8(d) (Note that for each of these figures we have
turned off the display of constraints not added by the step.).

The representative match has now been completely trans-
formed into the desired replacement. After applying the rule
tothe “F” in Figure 9(a), the corners are correctly rounded,
producing Figure 9(b).

The rule can easily be generalized to round all angles. In
fact, the constraints added to the Replace Pane will already
round any angle between 0 and 180 degrees, provided it can
be rounded. We need only add a 90 degree tolerance to the
search pattern, making the entire rule work for angles
between 0 and 180 degrees. Given two lines that meet at an
angle ABC, either this angle or its reverse, angle CBA, is
between 0 and 180 degrees. Thus this search pattern will
match any pair of connected lines, and the convex angles of
the search pattern and the match will be aligned, which is
important for the replacement. Applied to the “N” of Figure
10(a), therulerounds all the angles, producing Figure 10(b).

@ (b)

FIGURE 10. Rounding arbitrary angles in an N. (a) The
unrounded version; (b) After application of
the generalized rule. (This figure has been
reduced.)

ALGORITHM

Objects in both the scene and the Search Pane can be
viewed as nodes in a graph, with constraints linking the
nodes. Therefore, matching the search pattern to the scene
requires finding occurrences of one graph within another.

This is known as the subgraph isomorphism problem, and
the bad news is that it is NP-complete for general graphs
[3]. The good news is that for a search pattern of fixed size
the matching can be done in polynomial time, and for typi-
cal replacements the exponent is very small. To match the n
elements of the search pattern to the m elements of the
scene, the cost is O(cm"), where ¢ is the number of
constraints in the search pattern. Each of the examples
presented here has a search pattern of two objects (examples
1 and 2) or less (polylines in search patterns, as in example
3, count as single objects), so the costs are O(mz) and O(m),
respectively. For dynamic search and replace, when asingle
object is created or modified, the search proceeds even
faster, since we know this object must participate in the
match. In this case the exponent is reduced by one, and the
search costs for the examples in this paper are linear or
constant time.

Initially, objects in the Search Pane are placed in alist, and
one by one each is matched against scene objects. If amatch
is found for an object, the search proceeds to the next
element of the list. If no match can be found for a given
object, the search backtracks and a different match is sought
for the previous object. When matching a Search Pane
object against scene objects, MatchTool 2 first verifies that
the graphical attributes selected in the Search Column corre-
spond, and then proceeds to examine relationships
expressed by constraints. Only those constraints that refer-
ence the Search Pane object currently being matched, with
no references to other unmatched objects, need to be consid-
ered at this step. As an optimization, constraints are pre-
sorted according to when in the search process they can be
tested.

Another technique accelerates the search by using the
Search Pane constraints to isolate where in the scene
matches might be found. For example, if the Search Pane
contains two objects with a distance constraint between
them, and a match has been found for the first object, then
we can determine how far away the second match must be
located in the scene (to the accuracy of the constraint toler-
ance). When matching the second object, we can immedi-
ately rule out objects whose bounding box does not intersect
this region. Similarly, slope and angle constraints also
narrow down the match’s location, but the intersection
calculations are more costly, so we currently do not use this
information.

When a match is found that the user chooses to replace, the
constraints of the objectsin the Replace Pane are copied and
applied to the match. This operation is somewhat tricky,
since it requires a mapping between objects in the Replace
Pane and the matched objects of the scene. We do thisas a
two step process: first we map the Replace Pane objects to
those in the Search Pane, and then we map the Search Pane

8 of 10

objects to the match. The second mapping, between the
Search Pane and the match, is generated automatically by
the matching process. The first mapping must be created
through other means and is done only once, in advance of
searching. We have two mechanisms to do this. When
objects are copied from the Search Pane to the Replace
Pane, they are automatically mapped by the system. This
mapping can be overridden or supplemented through auxil-
iary commands. In addition to copying constraints from the
Replace Pane to the match, we also copy objects in the
Replace Pane that are not mapped to objects in the Search
Pane. This allows constraint-based replacements to add
objects to the scene.

IMPLEMENTATION

MatchTool 2 and the RuleTool are both implemented as part
of the Chimera editor. Chimera is written mainly in Lucid
COMMON LISP (using the Common Lisp Object System),
with alittle C code thrown in for numerically intensive
tasks and window system communications. It runs on Sun
Workstations under the OpenWindows 3.0 window system.
Chimera uses Levenberg-Marquadt iteration to solve
systems of constraints [18], and can currently enforce about
10 different types of geometric relations.

The implementation of MatchTool 2 was greatly facilitated
by the use of generators, which are objects that return the
values of a sequence on an as-needed basis. Both the func-
tion and data for producing the next value are stored in the
generator. The first MatchTool used a single generator for
producing all matching orientations of one shape against
another. It worked so well that in MatchTool 2 we use
generators pervasively. MatchTool 2 has generators for
matching sets of segments within an object, matching a
single Search Pane object, matching the entire search
pattern, and matching the activated rules of a ruleset. The
abstractions provided by these generators made the program
elegant and much easier to write. The code runs reasonably
quickly. For example, the search and replace operations in
Figure 7 take 0.11 seconds on a Sun Sparcstation 2 (28.5
MIPS), including the time spent solving constraints.

CONCLUSIONS AND FUTURE WORK

The power of graphical search and replace is significantly
enhanced by the addition of constraints. Constraints allow
specific geometric relations to be sought and enforced,
making the rules applicable in many situations not
addressed by search and replace on complete shapes.
Constraint-based search and replace is a convenient inter-
face for defining and understanding rules that transform
drawings, including illustration beautification rules. Other
systems have pre-coded beautification rules, so that existing
rules can be understood only by reading documentation or

using the system, and new rules can be defined only as
programming enhancements. Constraint-based search and
replace allows new rules to be defined by the user, making
an additional kind of editor extensibility possible.
Constraint-based search and replace can add new objects to
a scene, constrained against existing objects, which extends
the applications of the technique beyond simple beautifica-
tion.

We are pleased with the interface for constraint-based
search and replace specifications, though several important
user options need to be added. In Peridot the search process
is terminated when all of an object’s degrees of freedom
have been constrained. Thisis avery useful feature that we
would like to add. However, the constraints that we use are
multi-directional, and often non-unique (i.e., they may
constrain adegree of freedom without uniquely determining
it), so it is harder in Chimera to determine when thisis the
case. For example, in beautifying the house shown in Figure
4, our implementation prompts the user to accept or reject
replacements, even if they add only redundant constraints
(i.e. constraints already implied by other constraints in the
scene). We are currently investigating methods for deter-
mining when a degree of freedom is already constrained.

These methods might also indicate if existing constraints
conflict with another that we would like to add, and if so
which. If there is a constraint conflict, MatchTool 2 should
allow the option of either removing conflicting constraints
and applying the new ones, or not performing the replace-
ment at al. Currently we can determine only whether or not
the augmented system can be solved by our editor. If it
cannot, we print a message and the user can either undo the
replacement or manually remove the unwanted constraints.

Recent research has dealt with merging rule-based tech-
niques into direct manipulation systems [6][7]. Constraint-
based search and replace is a direct manipulation technique
for defining rules that govern the geometry and placement
of graphical objects. Since direct manipulation interfaces
represent data in terms of such objects, dynamic constraint-
based search and replace might be useful for defining rules
to control the behavior of these interfaces. For example,
certain types of semantic snapping could be defined with
this technique. We are interested in modifying constraint-
based search and replace to make it useful for thistask.

Rulesin our system could be enhanced in anumber of ways.
Currently thereis no mechanism for expressing the value of
areplacement attribute relative to the match. For example,
our system currently cannot search for al anglesin agiven
range, and add 5 degreesto each. In addition, we would like
to be able to control the permanence of constraintsin the
replacement pattern individually, and to assign them indi-
vidual priorities if necessary. To improve the visual repre-

9of 10

sentation of rules we should display the tolerance of the
Search Pane constraints, textually, in their labels.

Finally, we would like to improve our tools for archiving
and merging multiple rule sets, add new kinds of constraints
to our system, and allow numerical parameters to the search
and replacerules.

ACKNOWLEDGMENTS

Eric Bier originally suggested the idea of graphical search
and replace, and participated in the development of Match-
Tool 1. Michael Elhadad’s comments lead to an improved
paper. Thiswork was partialy funded by a grant from IBM.

REFERENCES

1. Bier, E. A., and Stone, M. C. Snap-Dragging. Proceed-
ings of SIGGRAPH ‘86 (Dallas, Texas, August 18-22,
1986) In Computer Graphics 20, 4 (August 1986). 233-
240.

2. Borning, A. Graphically Defining New Building Blocks
in ThingLab. Human Computer Interaction 2, 4. 1986.
269-295. Reprinted in Visual Programming Environ-
ments. Paradigms and Systems. Ephraim Glinert, ed.
|EEE Computer Society Press, Los Alamitos, CA. 1990.
450-469.

3. Garey, M. R., and Johnson, D. S. Computers and Intrac-
tability: A Guide to the Theory of NP-Completeness.
Freeman, San Francisco, CA. 1979.

4. Goines, D. L. A Constructed Roman Alphabet. David R.
Godine, publisher. 306 Dartmouth St., Boston, MA
02116. 1982.

5. Hudson, S. E. An Enhanced Spreadsheet Model for
User Interface Specification. Report TR 90-33. Univ. of
Arizona. Computer Science. October 1990.

6. Hudson, S. E., and Yestts, A. K. Smoothly Integrating
Rule-Based Techniques into a Direct Manipulation
Interface Builder. In Proceedings of UIST ‘91 (Hilton
Head, SC, November 11-13). ACM, New York, 1991.
145-153.

7. Karsenty, S., Landay, J. A., and Weikart, C. Inferring
Graphical Constraints with Rockit. Research Report.
DEC Paris Research Laboratory. In preparation.

8. Kurlander, D., and Bier, E. A. Graphical Search and
Replace. Proceedings of SIGGRAPH ‘88 (Atlanta,
Georgia, August 1-5, 1988). In Computer Graphics 22,
4 (August 1988). 113-120.

10.

11

12.

13.

14.

15.

Kurlander, D. Editor Extensibility: Domains and Mech-
anisms. Technical Report CUCS-516-89. Columbia
University, Computer Science. May 1989.

Kurlander, D. Graphical Editing by Example. Ph.D.
Thesis. Columbia University. Computer Science. In
preparation.

Lewis, C. NoPumpG: Creating Interactive Graphics
with Spreadsheet Machinery. In E. Glinert, Visual Pro-
gramming Environments: Paradigms and Systems,
|EEE Computer Society Press, Los Alamitos, CA. 526-
546.

Maulsby, D. L., Witten, I. H., and Kittlitz, K. A. Meta-
mouse: Specifying Graphical Procedures by Example.
Proceedings of SIGGRAPH ‘89 (Boston, MA, July 31-
August 4, 1989) In Computer Graphics 23, 4 (July
1989). 127-136.

Myers, B. A. Creating User Interfaces by Demonstra-
tion. Academic Press, Boston, 1988.

Myers, B. A. Demonstrational Interfaces: A Step
Beyond Direct Manipulation. Technical Report CMU-
CS-90-162. Carnegie Mellon University, School of
Computer Science. August 1990.

Myers, B. A. Graphical Techniques in a Spreadsheet for
Specifying User Interfaces. In CHI ‘91 Proceedings
(New Orleans, LA, April 27-May 2, 1991). ACM, New
York. 1991. 243-249.

10 of 10

16.

17.

18.

19.

20.

21.

22.

Nelson, G. Juno, A Constraint-Based Graphics System.
Proceedings of SIGGRAPH ‘85 (San Francisco, CA,
July 22-26, 1985) In Computer Graphics 19, 3 (July
1985). 235-243.

Pavlidis, T. and Van Wyk, C. J. An Automatic Beautifier
for Drawings and Illustrations. Proceedings of SIG-
GRAPH ‘85 (San Francisco, CA, July 22-26, 1985) In
Computer Graphics 19, 3 (July 1985). 225-234.

Press, W. H., Flannery, B. P, Teukolsky, S. A., and Vet-
terling, W. T. Numerical Recipesin C: The Art of Scien-
tific Computing. Cambridge University Press,
Cambridge, 1988.

Shneiderman, B. Direct Manipulation: A Step Beyond
Programming Languages. |IEEE Computer 16, 8
(August 1983), 57-69.

Sutherland, I. E. Sketchpad: A Man-Machine Graphical
Communication System. AFIPS Conference Proceed-
ings, Spring Joint Computer Conference. 1963. 329-
346.

Vander Zanden, B. T. Constraint Grammars—A New
Model for Specifying Graphical Applications. In CHI
‘89 Proceedings (Austin TX, April 30-May 4, 1989).
ACM, New York, 1989, 325-330.

Weitzman, L. DESIGNER: A Knowledge-Based
Graphic Design Assistant. |CS Report 8609. University
of California, San Diego. July 1986.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

