
To appear in UIST ‘92 Proceedings, November 1992, Monterey, CA

ABSTRACT
Many tasks performed using computer interfaces are very
repetitive. While programmers can write macros or proce-
dures to automate these repetitive tasks, this requires special
skills. Demonstrational systems make macro building
accessible to all users, but most provide either no visual
representation of the macro or only a textual representation.
We have developed a history-based visual representation of
commands in a graphical user interface. This representation
supports the definition of macros by example in several
novel ways. At any time, a user can open a history window,
review the commands executed in a session, select opera-
tions to encapsulate into a macro, and choose objects and
their attributes as arguments. The system has facilities to
generalize the macro automatically, save it for future use,
and edit it.

KEYWORDS: Macros, demonstrational techniques, histo-
ries, graphical representations, programming by example.

INTRODUCTION
When applications are made extensible, the entire user
community benefits. Individuals can customize their appli-
cations to the tasks that they often encounter, and experts
can encapsulate their expertise in a form that less skilled
users can exploit. By writing a macro or program, users can
extend an application to perform tasks not included in the
original interface; however this typically requires both
programming skills and familiarity with the application’s
extension language. Systems with a macro by example or
programming by example component generate code auto-

matically in response to tasks demonstrated by the user
through the application’s own interface [12]. These systems
make the benefits of extensibility accessible to the entire
user community.

Many applications, such as GNU Emacs [14], have a macro
by example facility, but lack a visual representation for the
macros. Without a visual representation, it is impossible to
review the operations that compose the macro. When there
is an error in such a macro, the macro must be demonstrated
once again from scratch. If an error occurs in a macro with-
out a visual representation, the system cannot provide a
comprehensible error message explaining which step gener-
ated the error.

Though visual representations are clearly important for a
macro by example facility, many systems omit this compo-
nent since it is problematic how to statically display
commands executed through an application’s graphical user
interface. We have developed a technique for visually repre-
senting such commands. Previously we used a representa-
tion, called editable graphical histories, to provide a visual
record of commands executed in a session with a graphical
editor [6]. We have extended this technique to represent
macros by example, and support the definition and editing
of these macros. Here we introduce a macro by example
facility that uses editable graphical histories as its visual
representation, and discuss the many ways that the macro
facility takes advantage of these histories.

The macro by example system described in this paper is
implemented as part of Chimera, an editor system with
modes for editing 2D illustrations, user interfaces, and text
[8]. Macros can currently be defined in both the illustration
and user interface editing modes. All of the examples in this
paper are generated from the PostScript output of Chimera
and its macro by example facility.

A History-Based Macro By Example System

David Kurlander*
Steven Feiner

Department of Computer Science
Columbia University
New York, NY 10027

E-Mail: {djk, feiner}@cs.columbia.edu

*Author’s current address: Microsoft Research, One Microsoft
Way, Redmond, WA 98052-6399.

In the next section we discuss how other example-based
systems have dealt with the issue of representation. Then we
briefly discuss editable graphical histories, and in the rest of
the paper focus on how they support a macro by example
facility.

RELATED WORK
Since most programming by example research has dealt
with problems other than representation, many systems
ignore this issue. Peridot [11] and Metamouse [10] provide
highlighting or feedback for individual program steps,
however they depict a single step at a time with no visual
representations for the complete procedures which they
infer. A more comprehensive graphical representation
would allow the user to quickly examine and edit any step.

Representing commands in text-based systems tends to be
easier, since the textual commands themselves form a
convenient representation. Tinker, a text-based program-
ming by example facility, has a textual audit-trail of steps
used in constructing procedures [9]. To edit the demon-
strated procedure, the user can either textually edit these
steps or the resulting LISP procedure. Tweedle, a graphical
editor with both a WYSIWYG view and a textual code
view, allows procedures to be generated in both views [1].
However, to edit a procedure, the user must be able to
understand the code view. In the MIKE UIMS, graphical
macros can also be defined by demonstration [13]. In this
system macros can be defined and edited largely in demon-
stration mode, but the visual representation of graphical
commands is textual.

A programming by example component of SmallStar, a
miniature version of the Star user interface, adopts a mixed
text and iconic representation for macros [4]. The system
uses a predefined set of icons or pictographs to represent
entities on the desktop. The domains for which our system
is targeted are more graphical in nature, so prefabricated
icons will not suffice. As will be discussed in more depth in
the next section, our approach is to generate graphics auto-
matically to represent the operations in the macro.

All the programming by example systems discussed thus far
have special operations to start and stop recording events. In
our system, operations are always being recorded by an
undo/redo mechanism. When users realize that a set of oper-
ations that they had performed are generally useful, they can
always open up a history window and encapsulate the inter-
esting operations into a macro. A programming by example
system named EAGER also generates macros from a
history [3]. It constantly monitors the command stream for
repeated operation sequences. When a repetitive task is
detected, the system presents feedback that indicates the
tasks it anticipates, and when users are confident in
EAGER’s predictions, they can have it automatically gener-
ate a generalized procedure. However, this procedure has no
graphical representation.

EDITABLE GRAPHICAL HISTORIES
Command histories in our graphical user interface are repre-
sented visually using a comic strip metaphor. Actions in the
history of the interface are distributed over a sequence of
panels. We refer to this representation as an editable graphi-
cal history [6]. Figure 1 shows a graphical history represen-
tation of the commands that added text and a drop shadow
to the horizontal oval labeled GENERATOR in Figure 2.

Editable graphical histories use several techniques to make
a sequence of commands more comprehensible. The panels
are graphical, and use the same visual language as the inter-
face itself. Since the user of the system is already familiar

Argumentative
Relations

SyntaxLexicon

Sentence

Argument

Conclusion

KB

User

Model

Argumentative

Intent

Evaluation

Module

GENERATOR

FIGURE 2. A technical illustration created with Chimera.

FIGURE 1. A graphical history representation of steps that add text to an oval and create a drop shadow. These steps were
used in creating part of Figure 2. Panels whose labels are shown in reverse video have been selected by the user
to create the macro shown in Figure 3.

Graphical History

GENERATOR

Add-Text - 2

Times-BoldText Input:

GENERATOR

Set-Font - 2

GENERATOR

Drag - 3

Sentence

GENERATOR

Copy - 2

DarkGreyText Input:

Sentence

GENERATOR

Set-Fill-Color - 1

Sentence

GENERATOR

Move-Below - 2

GENERATOR

Drag - 2

History Ops Editable: <----- ----->Gran: 0 1 2 3 4 5

with the interface’s conventions, it is easy for them to inter-
pret the histories.

Related commands are coalesced into single panels by
pattern matching rules. This makes the histories more
compact, but also makes them easier to interpret, since
instead of showing physical commands the system shows
logical commands. For example, the first panel of Figure 1,
represents commands that have added a text label to the
oval. The two commands move the caret (the software
cursor) to the desired position for the text, and then insert
the characters. The second panel changes the font of this
text and includes both an object selection and Set-Font
command. An interactive elaboration facility can be used to
expand higher-level panels into their lower-level compo-
nents.

If we were to shrink down the entire screen to fit in each
panel, then it would be difficult to see the changes that the
panels represent. Instead the system shows only those
objects that participate in the operation, as well as a little
scene context to indicate where on the screen the operation
was performed. Each panel of Figure 1 contains only a
subset of Figure 2 or of Chimera’s control panel. For exam-
ple the second panel includes the Text Input widget, in
which the name of the new font was typed, as well as the
selected text. The history mechanism adds other objects to
the panels, only to provide context. Objects in the panels are
rendered according to their roles in the explanation.
Currently the rendering pass subdues contextual objects by
lightening their colors. This usually makes it easy to distin-
guish these objects from those that participate in the opera-
tion.

MACRO DEFINITION
Macro definition in Chimera consists of two primary passes.
In the first pass the task is demonstrated using the regular
user interface. The dialogue for this pass is indistinguish-
able from regular user-interaction—there are no special
commands to execute, and no special operations to start and

stop macro recording. Since people often do not think of
defining a macro until they have executed the steps at least
once, the commands may already have been demonstrated,
and no additional repetition is necessary.

In the second pass, the demonstrated sequence of
commands is supplemented with additional information to
convert this sequence into a macro. The commands
executed in this pass are different than those forming the
ordinary application dialogue. This pass includes selecting a
set of previously executed commands to encapsulate into
the macro, selecting arguments for the macro, generalizing
the commands to work in other contexts, and debugging and
saving the macro. Splitting macro definition into a demon-
strational step and a generalization step was first done by
Halbert in SmallStar [4]. It has the advantage that the
demonstrational pass of the macro is purely demonstra-
tional, and certain constructs, such as conditionals and
loops, which are difficult to add by demonstration, can be
introduced in a separate non-demonstrational pass.

However, unlike SmallStar which had special commands to
start and stop recording a macro, commands in Chimera are
always being recorded by an undo/redo facility. At any time,
users can open up the history window, review the
commands executed in a session, or undo and redo some of
these commands. They can also select a set of commands to
be incorporated into a macro. The history of Figure 1 shows
a set of commands that add text to an oval and construct a
drop shadow for the oval. Recognizing that drop shadows
are necessary for other objects in the scene, we can now
extract the relevant panels from the history and turn them
into a macro.

First we select these panels using the mouse, and as feed-
back, the selected panel labels appear in reverse video, as
shown in Figure 1. The macroize operation, which is
executed next, takes a panel selection, and opens up a new
Macro Builder window on these panels. This window
initially contains only those panels that were selected in the
graphical history.

FIGURE 3. Macro Builder window containing operations to add a drop shadow to an object.

Macro Builder

Make-Argument - 2 Make-Argument2 - 2 Copy - 2 Set-Fill-Color - 1 Move-Below - 2 Drag - 2

colorText Input:

File

DarkGrey

Constraints

GENERATOR

objectText Input:

GENERATOR

Sentence

GENERATOR

Sentence

GENERATOR

DarkGreyText Input:

Sentence

GENERATOR

Macro Ops Editable: <----- ----->Gran: 0 1 2 3 4 5

Argument Declaration
As the next step, we declare the arguments to the macro. We
do this by selecting the arguments where they appear in the
panels, and providing them with names. To select a compo-
nent of a panel, we first have to make the panels editable.
This is done by checking the editable box at the bottom of
the Macro Builder, which replaces the static graphical repre-
sentations of the history panels with fully editable graphical
canvases. Objects in these canvases can be selected and
manipulated in the same manner as objects in a regular
scene. The first argument to this macro will be the object for
which the shadow is generated. We examine the panels in
the macro builder window for an instance of the original
oval. This oval appears in each of the panels, so we select
any one of these instances, give it the name “object” by
typing this name in the Text Input widget of the control
panel, and execute the Make-Argument command.

A panel is added to the beginning of the history, depicting
the argument selection. Argument declarations are placed at
the beginning of our macros, just as they appear at the
beginning of traditional procedures. The resulting panel is
the first of the sequence of panels depicted in the Macro
Builder of Figure 3. The argument declaration panels show
the arguments as they appear before the operations in the
macro were invoked, plus additional scene context. They
are not just copies of the panels that were used for selecting
the arguments. Scene objects that do not exist at the begin-
ning of the macro, such as the oval produced by the copy
operation in the third panel of Figure 3, are not plausible
arguments, and Chimera will not allow them to be used for
this purpose.

In addition to choosing graphical objects to be arguments to
a macro, we can also choose graphical properties such as
color or linestyle. To select a graphical property, we can
select from the history a widget in which this property is
displayed. Widgets can be selected just like any other graph-
ical object. For this macro, we would like the color of the
drop shadow to be a second argument. First we locate the
panel in which we specified the color. This is the Text Input
field of the fourth panel of Figure 3. We select this widget,
and give the second argument the name “color”. A new
argument declaration panel is created, which is the second
panel of Figure 3.

Recall that our system chooses rendering styles for panel
objects according to the objects’ roles in the explanation.
However in Figure 3, all objects are rendered in their usual
fashion. We automatically revert to this standard rendering
when panels are made editable, since these panels become
fully editable scenes, and the user may want to query or
manipulate the colors and other graphical properties of the
objects in these panels. When the panels are restored to their

original uneditable state, the original rendering is also
restored.

Generalization
Next it is important to generalize the macro operations to
work in new contexts. This generalization can be either
specified by the user, or inferred by the system with the help
of a built-in inference engine. For each editor command,
Chimera has been supplied with a set of different interpreta-
tions, as well as heuristics for distinguishing when each
interpretation is likely. When choosing a default generaliza-
tion of a command, the system evaluates the heuristics in
the context of the graphics state to produce an ordered list of
possible intents. The user can view the system’s generaliza-
tions and override them if necessary. Once again the graphi-
cal history representation is useful as a means of selecting
panels, this time for choosing panels to be generalized.

For example, after selecting the last panel of Figure 3, we
execute the Generalize-Panel command. The window
shown in Figure 4 appears, containing the various generali-
zations that the system considered plausible in the given
context, with the most likely interpretation selected. The
generalizations of all the operations contained in a panel can

be viewed and modified at once. This panel contains the
selection of the drop shadow, and the subsequent translation
of the shadow to lie at the appropriate offset under the origi-
nal object. Only one of the built-in interpretations for the
selection is valid in the context of the last panel: that the
object selected at this step is the object created in the third
panel.

The Generalize-Panel command need not be executed
explicitly for every panel in the macro. Another command
can be used to set or reset all panels to their default general-
ization. When the macro is executed, all panels that have
never been generalized are automatically given a default
generalization.

Generalize DRAG

ResetApply

2. Move caret absolutely to (25.8 510.9)

1. Move caret relatively by (-8.0 7.7)

Describe the caret motion during the drag. Choose one:

1. An object created in panel #3.

Explain selection. Choose one:Explain selection. Choose one:

1. An object created in panel #3.

Describe the caret motion during the drag. Choose one:

2. Move caret absolutely to (25.8 510.9)

1. Move caret relatively by (-8.0 7.7)

Apply Reset

FIGURE 4. A form showing the system’s generalizations
for the last panel of Figure 3.

Generalizing a selection
The system has a number of possible interpretations of
object selections. As an example of the types of generaliza-
tions Chimera is capable of performing, we list the various
classes of selection generalizations here. An object may be
selected because of the following classes of reasons:

• Argument. The object is an argument to the macro.

• Constant. The object is a constant in the macro.

• Component. The object is a particular component of an-
other object, or a parent of another object. Example: first
vertex of a polyline.

• Temporal Reference. The object was referenced in a
particular macro step. Example: object created in panel
#3.

• Position. The object shares a particular geometric rela-
tionship with another object. Example: leftmost segment
of a box.

Selection criteria can also be combined in two ways:

• Disjunction. Multiple objects selected for different rea-
sons. Example: an object is selected because it is either
argument 1 or argument 2.

• Composition. The composition of multiple selection cri-
teria. Example: first vertex of the second segment of ar-
gument 1.

This set of selection criteria is by no means complete. For
example, a set of objects may have been selected because
they share a particular graphical property in common (e. g.,
the same fill color), and Chimera cannot detect such an
intent. Even within the categories above, there are many
other selection criteria that we would like the system to
consider. For example, it will not propose that an object was
selected because it overlaps another interesting object.

Generalizing a move
The second checklist of Figure 4 explains the system’s
generalization of the move or drag operation. There are two
possible explanations that fit the bill: a relative translation
and an absolute move. In this case, the system chooses the
relative translation as most likely. If the dragged objects
were moved so that the caret, the software cursor, snapped
to an object or an intersection point (of either scene objects
or alignment lines), then this would be considered the most
likely interpretation. This allows us to define macros that
perform geometric constructions, using the snap-dragging
interaction technique developed by Bier [2]. For example,
we can use this technique to define macros in Chimera that
bisect angles, construct the midpoint of lines, and align
shapes.

Representing generalizations textually
Our macro facility represents generalizations as textual
supplements to the graphical display of commands. Another
approach might involve adding graphical symbols to the
panels in order to make the system’s interpretations of the
commands clear. This approach has several problems. If the
number of generalizations known by the system is large,
then the graphical vocabulary must also be large. Unless the
same graphical conventions are used by the system during
normal editing, the user would need to learn a new visual
language in order to define macros. By representing gener-
alizations textually, in English, our generalizations are
accessible to all users of the system. Our approach is similar
to that of SmallStar, in which generalizations are displayed
as textual data descriptions [4].

Macro archiving and invocation
After a macro has been generalized, it can be named, saved,
and invoked. Currently we save macros with all of the scene
state that was present at definition time. This allows an edit-
able graphical history representation of the macro to be
recreated for subsequent editing that is identical to the
panels originally displayed in the Macro Builder window
during macro construction time.

To invoke a macro, the user executes a menu command and
a macro invocation window pops up on the screen. For the
drop shadow macro that we have just defined, this window
is shown in Figure 5. The window contains an entry for each
of the arguments declared previously. The first argument,
“object” is assigned two buttons: one to set the argument
and the other to show it. The second argument, “color”, is a
property argument, and Chimera uses a different technique
to set and show property arguments. For each property argu-
ment, a copy of the widget used to specify the argument
during the original macro demonstration is included in the

invocation window. Since the Text Input field of the control
panel was originally used to specify the color of the drop
shadow, this widget is copied and added to the invocation
window. As a default, the widget contains the value speci-
fied for this parameter during macro demonstration time.

Add Drop Shadow

Apply

DarkGreycolor:

ShowSetobject:object: Set Show

color: DarkGrey

Apply

FIGURE 5. Window for setting arguments and invoking the
drop shadow macro.

Effectively this parameter is treated as an optional parame-
ter with a default. If the user does not change its value in the
macro invocation window, the macro will use the value that
was used during demonstration.

Testing and debugging
An important part of programming, demonstrational and
conventional alike, is the testing and debugging phase. In
the top row of Figure 6 we have created four different
shapes, in the second row we apply the drop shadow macro
to each, using the colors listed at the bottoms of the
columns. To create the drop shadow for the circle, we use
the dark grey default color already in the macro invocation
window. Next, we change the shadow color to black, and
apply the macro to the shape composed of splines and arcs.
Then, with the shadow color set to light grey, we apply the
macro to the text and finally the Bezier curve.

At this point we notice a bug in the macro. Though we
expect the macro to add a light grey drop shadow to the
Bezier, the drop shadow is black. To debug the macro, we
go back to the original Macro Builder window in Figure 3
and examine the commands that it contains. The bug
quickly becomes apparent. Though we changed the fill color
of the drop shadow, we never changed the line color. On
inspecting the results of this initial test again, it is clear that
the circle’s drop shadow is incorrect as well since it too has
a black line, yet we did not notice a problem at first because
the shadow is dark.

The graphical history representation supports editing opera-
tions on either macros or the history directly, in place. When
the panels are made editable, new commands can be
executed directly on the panel objects. These additional
commands can be propagated into the history at the point at
which they are inserted, by executing the Propagate-Panel-

TextText

TextText
Dark Grey Black Light Grey Light Grey

TextOriginal
objects

First
test

Second
test

FIGURE 6. Testing the macro. The first row contains a set of test objects. The next row contains the results of invoking the
original macro on these objects, using the colors named at the bottoms of the columns. The final row shows the
results of invoking the debugged version of the macro.

FIGURE 7. Final version of the Macro Builder window containing operations to add a drop shadow to an object.

Macro Builder

Make-Argument - 2 Make-Argument2 - 2 Copy - 2 Set-Line-Color - 1 Set-Fill-Color - 1 Move-Below - 2 Drag - 2

colorText Input:

File

DarkGrey

Constraints

GENERATOR

objectText Input:

GENERATOR

Sentence

GENERATOR

Sentence

GENERATOR

DarkGreyText Input:

Sentence

GENERATOR

DarkGreyText Input:

Sentence

GENERATOR

Macro Ops Editable: <----- ----->Gran: 0 1 2 3 4 5

Changes command. When this command is executed, the
system transparently undoes all of the operations after the
newly inserted operations, executes these new operations,
and redoes all of the operations that had been undone. If
commands are added to the history, rather than a macro, the
editor scene corresponding to this history is updated accord-
ing to the changes. In all cases, the subsequent panels of the
history are regenerated to take into account the changes that
had been inserted earlier.

To fix the bug in the macro shown in Figure 3, we need to
add a Set-Line-Color operation. To do this, we type Dark-
Grey in the Text Input widget of Chimera’s control panel,
and execute the Set-Line-Color command in the third panel
of the Macro Builder window where the copy is already
selected. Next we select this panel, and execute the
command that propagates the newly inserted command into
the history just after the copy command. The resulting
macro is shown in Figure 7. An additional panel was created
(panel 4) to represent the newly added operation, and subse-
quent panels all show the copy with its new line color.

After adding the new Set-Line-Color panel to the macro, we
generalize this panel, and execute the macro on our test
cases once again. The results, shown in the last row of
Figure 6, are now as we expected.

Panels can also be deleted from histories or macros. The
user can select a sequence of panels, and execute a
command that removes these commands as well as any
effect that they had. As with command insertion, Chimera
must reformulate the panels appearing after the change,
taking into account the modified scene.

CONCLUSIONS
We have developed a graphical history representation that
supports macro construction in a variety of different ways.
The graphical history representation allows people defining
new macros by example to review the commands that they
have performed. Others who were not present during macro
definition time can examine the contents of a macro. The
commands are displayed graphically, in the same visual
language as the interface itself, thus people who have used
the system for ordinary editing can understand the macro
representation.

The history representation provides a means of selecting
operations. This is useful for two different steps of macro
creation. At any time, the user can scroll through the history,
and select out useful commands for a new macro. Accord-
ingly, Chimera needs no additional commands to start and
stop macro recording. Later, a user may want to view or
change the generalizations associated with a set of panels.

Again, the graphical representation can be used to select the
appropriate panels.

The macro representation makes it very easy to select argu-
ments. After selecting the checkbox that makes the panels
of a macro editable, we can select objects directly in the
panels and turn them into arguments. Graphical properties
can also be turned into arguments by selecting the widgets
that set these properties from the macro panels.

Macros are not always defined correctly the first time, and
the histories present an interface for editing commands.
New commands can be inserted by invoking additional
commands in the editable panels, and executing a command
that propagates the changes. Unwanted commands can be
removed by selecting panels and deleting them.

The macro system itself often refers to the representation
when communicating important information to the user.
During the generalization process, the interpretation of a
command may refer back to steps made at an earlier point in
time. For example, the system often needs to refer to an
object that was created in a particular panel, or a measure-
ment that was made at a certain step. Macros can generate
run-time errors if they are invoked on objects of the incor-
rect type. Chimera also uses the macro representation to
indicate which panel of the macro generated an error.

In summary, graphical histories facilitate macro definition
in five different capacities:

1. Reviewing macro contents

2. Selecting operations
• to encapsulate in a macro
• to set and view generalizations

3. Selecting arguments

4. Editing macro contents
• inserting operations
• deleting operations

5. Referencing operations
• during generalization
• in error messages

FUTURE WORK
The graphical histories representation can support macro
definition and testing in a number of other ways. We could
use this representation to show, step by step, the effects of
applying a macro to new arguments. By placing together
multiple macro viewers vertically, aligned so that similar
panels are registered together, we could easily compare the
effects of applying a macro to different argument sets, and
quickly find the panel in which one of the macros generates
unexpected results.

We could also use the panels to specify additional command
generalizations when the existing ones fail. For example,
one step in a macro might involve reducing a box’s width by
half. If the system is incapable of inferring the desired intent
of this operation, the user might be able to add annotations
to the panels that make the intent explicit. Since the panels
are editable, the user might be able to use direct manipula-
tion techniques to define a temporal constraint between the
width of the box at two different points in time (or panels).
The interface for doing this might be similar to Chimera’s
interface for defining constraints between separate objects.

There are a number of basic ways in which our macro by
example facility can be enhanced. Currently when we save
macros, we save all of the scene state, which allows us to
restore the original graphical representation of macros for
subsequent editing. This increases the storage requirements
of the macro. We could also provide an option that automat-
ically strips superfluous scene objects from the macro. Not
only would this reduce storage, but it might also make the
graphical macro representation clearer since it would
contain no extraneous objects.

We would also like to expand the generalizations that
Chimera is capable of making, so that a greater number of
useful macros by example can be defined. Loops and condi-
tionals would also increase the power of our macro facility.
We have experimented with using graphical search [5] and
constraint-based search [7] as iteration mechanisms for
graphical macros, but others would be helpful as well.

Finally, it is important to provide a means of representing
changes to the macros within the graphical representation,
so that changes can be undone. Currently, Chimera can
generate histories for macro panels that have been edited,
but once the panel changes have been propagated into the
macro, or a panel has been deleted, the information is lost.

ACKNOWLEDGMENTS
Michael Elhadad made suggestions that led to an improved
system. Members of the Programming by Example Work-
shop at Apple Computer provided insights helpful in revis-
ing this paper. This work was partially sponsored by a grant
from IBM Watson Research Labs.

REFERENCES
1. Asente, P. Editing Graphical Objects Using Procedural

Representations. DEC WRL Research Report 87/6.
November 1987. Revised version of Stanford Ph. D.
thesis.

2. Bier, E. A., and Stone, M. C. Snap-Dragging. Proceed-
ings of SIGGRAPH ‘86 (Dallas, Texas, August 18-22,

1986) In Computer Graphics 20, 4 (August 1986). 233-
240.

3. Cypher, A. EAGER: Programming Repetitive Tasks By
Example. In CHI ‘91 Conference Proceedings (New
Orleans, LA, April 27-May 2, 1991). 33-39.

4. Halbert, D. C. Programming by Example. Xerox Office
Systems Division Technical Report, OSD-T8402.
December 1984.

5. Kurlander, D., and Bier, E. A. Graphical Search and
Replace. Proceedings of SIGGRAPH ‘88 (Atlanta,
Georgia, August 1-5, 1988). In Computer Graphics 22,
4 (August 1988). 113-120.

6. Kurlander, D., and Feiner S. A Visual Language for
Browsing, Undoing, and Redoing Graphical Interface
Commands. Visual Languages and Visual Program-
ming. S.K. Chang (ed.). Plenum Press, New York, NY.
pp. 257-275, 1990.

7. Kurlander, D., and Feiner, S. Interactive Constraint-
Based Search and Replace. In CHI ‘92 Conference Pro-
ceedings (Monterey, CA, May 3-7, 1992). 609-618.

8. Kurlander, D. Graphical Editing by Example. Ph.D.
Thesis. Columbia University. Computer Science. In
preparation. 1992.

9. Lieberman, H. An Example Based Environment for
Beginning Programmers. In Instructional Science 14,
(1986). 277-292.

10. Maulsby, D. L., Witten, I. H., and Kittlitz, K. A. Meta-
mouse: Specifying Graphical Procedures by Example.
Proceedings of SIGGRAPH ‘89 (Boston, MA, July 31-
August 4, 1989) In Computer Graphics 23, 4 (July
1989). 127-136.

11. Myers, B. A. Creating User Interfaces by Demonstra-
tion. Academic Press, Boston, 1988.

12. Myers, B. A. Demonstrational Interfaces: A Step
Beyond Direct Manipulation. Technical Report CMU-
CS-90-162. Carnegie Mellon University, School of
Computer Science. August 1990.

13. Olsen, D. R. Jr., and Dance, J. R. Macros by Example in
a Graphical UIMS. Computer Graphics and Applica-
tions 8, 1 (January 1988). 68-78.

14. Stallman, R. GNU Emacs Manual, Sixth Edition, Ver-
sion 18. Free Software Foundation, Cambridge, MA.
March 1987.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

