
Editable Graphical Histories

David Kurlander
Steven Feiner

Department of Computer Science
Columbia University
New York, NY 10027
Abstract

Graphical interfaces typically provide their users with little
idea of a session’s history, except insofar as it is reflected in
the current state of the system. If undo and redo commands
are provided, they are often the only way to review the
actions performed, cycling through them in sequence. We
introduce the notion of an editable graphical history that can
allow the user to review and modify the actions performed
with a graphical interface. We have designed a testbed
system that creates a series of automatically-generated
panels that depict in chronological order the important
events in the history of a user’s session with Chimera, a
graphical editor. Our system uses heuristics to determine the
contents of each panel and the actions that it illustrates. The
user may scroll through the sequence of panels, reviewing
actions at different levels of detail, and selectively undoing,
modifying, and redoing previous actions.

Keywords: visual languages, editable graphical histories,
undo, redo, timeline display, user interface design, graphical
editing

1. Introduction

As a session with a computer system unfolds, it is natural
for the user to want to review previous actions, to undo or
redo in part what has been accomplished, and even to reap-
ply modified versions of previous commands. Conse-
quently, a number of user interface techniques have been
developed that provide a sense of the session’s history. For
example, command histories, typified by that of the
UNIXTM command shell csh [JOY79], allow the user to list,
edit, and re-execute previously executed commands. Many
window-based systems further provide the ability to scroll
over the entire transcript of a session and select text for re-
execution [SWIN86]. We will refer to this approach as
spatial browsing. Spatial browsing relies on an implicit
model of a session, or at least of the commands executed
during it, as a continuous scroll that can be browsed
spatially from beginning to end.

This work is supported in part by the Defense Advanced Research Projects
Agency under Contract N00039-84-C-0165, the New York State Center for
Advanced Technology under Contract NYSSTF-CAT(87)-5, and by an
equipment grant from the Hewlett-Packard Company AI University Grants
Program.
1 of 8 Originally published in the IEEE 1988 Works
Reprinted in Visual Programming
In contrast, most graphical interfaces and some textual
interfaces, such as full screen text editors, do not share this
virtual scroll model. These systems often attach importance
to the actual physical screen locations at which input and
output occur, modifying in place what is being displayed.
Examining the session history in such systems often
involves what might be called temporal browsing, in which
commands are “played back” to show their effect on the
system’s state. The ability to record all user actions and
replay them to recapitulate a session’s history has been an
important feature in graphical interfaces such as those of
computer paint systems [SMIT78]. Similarly, undo and redo
commands of the sort often implemented in editors typically
result in the screen being partially redrawn to show the state
before or after a command was executed. These techniques
are most commonly used for making modifications to past
actions, rather than merely browsing.

There have been several attempts to merge the spatial and
temporal history browsing paradigms for graphical inter-
faces. Feiner, Nagy, and van Dam’s IGD hypermedia system
[FEIN82] allows readers of its graphical documents to view
an automatically constructed timeline displaying time-
stamped miniatures of the pages displayed during the
session. Readers can scroll through the timeline display,
selecting a previous page to return to if desired. Christodou-
lakis and Graham [CHRI88] describe a system that presents
a scrollable window of icons corresponding to significant
points in a presentation that are determined by its author. An
architectural design system developed by Makkuni
[MAKK87] can simultaneously display separate copies of
an editor interface for each of a series of actions performed
by the user, visually linked to indicate their relationships.

In our work we have built on the visual metaphor of a comic
strip—a sequence of panels, each of which illustrates an
important moment in a story. The result is an editable
graphical history that is generated automatically as the user
interacts with a system, in our case a graphical editor. There
are several important ways in which our system differs from
earlier work:

Intra-panel content selection. Our system uses heuristics,
similar in spirit to those of [FEIN85], to select the objects
displayed in each panel and the style in which they are
drawn in order to emphasize the objects being manipulated
and the actions performed on them. In contrast, previous
systems have used exact screen miniatures or user-specified
icons.
hop on Visual Languages. Pittsburgh, PA. October 1988. pp. 127-134.
Environments: Applications and Issues. E.P. Glinert (ed.). IEEE Press,

Los Alamitos, CA. 1990. pp. 416-423.

Inter-panel detail removal. The number of actions
expressed in a single panel is determined automatically
based on user preference and on a context-sensitive rating of
the actions performed. Other systems show each action
separately or show only author-designated actions.

Interactive elaboration. The user can request to see a given
panel decomposed into lower-level ones or a set of panels
coalesced into a higher-level one.

Full history editing. Our system allows the user to edit the
actions expressed in the panels, deleting or modifying old
actions and adding new ones. Previously-executed actions
may be undone or modified, and subsequent actions redone.
Unlike previous displays of undo possibilities [VITT84],
graphical histories allow the user to view the past conse-
quences of previous commands without having to execute
an undo.

The following sections describe the visual language that we
chose for the system and how it is implemented.

2. Basic Concepts
We believe that graphical interaction is best represented
graphically. If the history mechanism uses the same visual
language as the interface supported by this mechanism, then
potential users of the histories need not learn a new
language. As in GNU Emacs [STAL87], histories can be
represented as lisp-expressions. Indeed, the histories in our
implementation are represented internally as such.
However, this representation is best hidden from the user if
the history mechanism is to be used by programmers and
non-programmers alike. In the case of graphical user-inter-
action, parameters to operations also tend to be entities
(such as particular graphical objects or attributes) that are
expressed relatively poorly in textual form, thus indicating a
need for graphical histories.

We have been experimenting with graphical histories in the
domain of graphical editing, although the ideas contained
here can be applied to other graphical interfaces as well. In
particular, we have constructed a history mechanism for a
small graphical editor, called Chimera. All of the illustra-
tions in this paper were created with the Chimera editor or
by its graphical history mechanism. In both its user-inter-
face and the types of interactive techniques that it supports,
Chimera is patterned after the Gargoyle illustrator [BIER86,
PIER88]. Chimera’s history facility uses the same pictorial
conventions as Chimera’s user-interface, certain salient
features of which will be explained in subsequent examples.
In the remainder of this section we provide a high-level
overview of Chimera’s graphical history system, while post-
poning a detailed explanation to the following sections.

As a picture is edited in one window, pairs of panels that
graphically describe the editing process are generated in
another. The top panel of each pair, which we call prologue,
shows the relevant portion of the scene prior to the funda-
mental operation or operations represented by the pair.
Usually, the prologue contains those objects that can be
construed as arguments to the operation. The bottom panel,
the epilogue, depicts the part of the scene altered by these

editing operations. Together, the pair represents “before”
and “after” views of the portion of the scene acted on by a
set of graphical editing commands.

Figure 1a displays the contents of a Chimera graphical
editor window, and Figure 1b is a pair of history panels
describing the editing sequence used to create Figure 1a.
This figure, as well as those in the rest of the paper, is
rendered from the PostScript [ADOB85] output of the
Chimera editor, and its history mechanism. In Figure 1b, the
first pair of panels depicts the sequence of line drawing
operations that constructed the square at the top left of
Figure 1a. The prologue shows only the caret (appearing as
a Λ), which represents the editor’s current position. Since
one endpoint of a line is always based at the current caret
location during the line drawing process, the caret acts as
one argument to the line drawing command, and is impor-
tant to include in the prologue of a panel pair representing
one or more add line commands. The epilogue shows the
square after it has been constructed. Note that this panel pair
represents four add line commands.

The second, third, and fourth pairs of panels also show the
construction of various shapes through add line commands.
In the fifth pair of panels, we have selected two of these
shapes to close (closed shapes are filled with the current fill
color). The prologue shows those shapes that were selected
to be closed, and neighboring shapes as well, and the
epilogue displays these same shapes after the close opera-
tion was performed. Selected polylines are indicated by
small, filled squares placed at the vertices. This is the same
notation used by the editor itself, so users of the history
facility are familiar with this. In the sixth pair we show a
rotation executed on the unfilled triangle. The arguments to
the rotation command include the anchor (drawn as a square
with lines across its two diagonals), which acts as the center
of rotation; the caret, which follows the hardware cursor
during a rotation; and the selected objects, which are the
objects acted upon by the rotation operation. Anchor, caret,
and selected objects are represented visually in the history
as they appear in the editor application. All of these argu-
ments are included in the prologue of the rotation of
command. The epilogue of the rotation command shows the
relevant portions of the scene after the rotation has been
performed.

Above each panel pair, we display the name of the main
operation which it depicts, since this is not always immedi-
ately obvious from the before and after view. The operation
names are those that the user is familiar with (through
menus, documentation, and feedback echoed by the applica-
tion). The history thus uses the same language used to
generate the original picture. Also above each pair of panels
is a pair of numbers that indicates how many editor opera-
tions were clustered automatically into the prologue and
epilogue. For example, the first prologue contains a single
operation, since the user made one caret-positioning
command immediately prior to drawing the square. The
epilogue contains eight editing commands, including the
four line drawing commands and four implicit caret posi-
tioning commands called by the line drawing operations.
2 of 8

Any of these panel pairs can be expanded to show their
component operations in more detail. If we expand the first
panel pair of Figure 1b once, the individual line drawing
operations are expanded into separate panels, as shown in
Figure 2a. Similarly, in Figure 2b we expand the rotation
represented by the sixth panel pair of Figure 1b into two
pairs. The first of these portrays the placement of the anchor
at the caret position. The second pair shows the rotation
operation separated from the anchor placement.

3. Choosing Panel Contents

Since the size of each of the history panels is considerably
smaller than the size of the edit window, it is usually neces-
sary to restrict the objects displayed in the panels to a subset
of those appearing in the entire picture. This is especially
important for pictures that are more complex than the
simple examples shown here. The scale of the objects
appearing in the history panes and the portion of the scene
shown is currently based on a number of heuristics similar
3 of 8

Add Line - 1 / 8 Add Line - 1 / 6 Add Line - 1 / 16

(a)
to those used in the APEX system for generating pictorial
explanations [FEIN85]. If the action represented by an
epilogue acts upon the currently selected objects, these
objects will be shown in the prologue as they appear before
the operation, and in the epilogue as they appear afterwards.
When an operation uses certain metaobjects as arguments,
such as the caret or anchor, then these metaobjects will be
drawn in the prologue at their positions before the operation
sequence, and in the epilogue at their positions afterwards.

In the case that an object is in the process of being drawn,
we include the rest of the object in both the prologue and
epilogue. This provides a certain amount of context, which
is necessary in order to help the user determine the spatial
correspondence between the history panel and the scene in
the editor at the time the operation was performed. The
mechanism which chooses the panel contents always
attempts to include in each a landmark—an object that can
help to disambiguate the panel’s relationship to the scene.
The landmark should also be located extremely near (or
ideally in) the portion of the scene that would otherwise be
displayed in the panel. Window edges might also make
reasonable landmark objects if the application does not have
a scrollable canvas. This would be particularly useful with
respect to the first panel of an editing sequence starting with
an empty scene. Currently our mechanism for choosing
landmark objects is primitive, and this part of the graphical
history system has been targeted for future work.

Because Chimera uses the Snap-Dragging user-interface
paradigm, described in [BIER86], it is usually clear when
one object is being transformed or drawn directly to another.
Objects have “gravity” and the caret, which is used both in
transforming and drawing objects, is gravity sensitive. For
example, when a collection of objects (including the caret)
is translated, the collection has a propensity to snap into
place in such a way so that the caret is attached to a nearby,
immobile object. When objects are transformed or drawn
directly to another object in the scene, this object also
provides important context for the operation, and appears in
the history panels. An interesting problem on which we are
Add Line - 1 / 6 Close Trajs - 4 / 1 Rotate - 6 / 2 (b)

Figure 1. The Chimera editor. (a) The editor window.
(b) Its graphical history.

Add Line - 1 / 2 Add Line - 0 / 2 Add Line - 0 / 2 Add Line - 0 / 2

(a)

Place Anchor - 2 / 1 Rotate - 3 / 2

(b)

Figure 2. Expanded panels. (a) An
expansion of the first panel pair of
Figure 1b into its component Add
Line commands. (b) An expansion
of the last panel pair of Figure 1b
into Place Anchor and Rotate
commands.

Note: the total number of operations
represented by the frames remains
c o n s t a n t u n d e r e x p an s i o n .
Commands can migrate, however,
between prologue and epilogue.
working involves determining how little of an object that is
added to provide context can appear in a history panel, and
still provide sufficient contextual information.

Finally, the system tries to have the prologue and epilogue
map to the same region of the editing canvas, since these
two panels are intended to provide a before and after view
of a section of the scene. Occasionally this is not an optimal
decision, as in the case where a small object is translated
across the entire editor window. In this case, if the prologue
and epilogue were both to include the initial and final posi-
tion of the object, the scale of the panels might be such that
the translated object were near invisible. If the merged area
of the prologue and epilogue region extents is more than a
preset constant times the sum of the individual extents, then
separate regions are depicted in the prologue and epilogue.
After two subregions of the editing window are chosen for
display in the prologue and epilogue, the contents of these
regions are isotropically scaled into the appropriate panels
in the history window.

4. Panel Granularity

The number of commands that are represented in a single
pair of panels is chosen automatically, based upon both a
user-specified granularity level, and the sequence of opera-
tions that are actually performed. If the user is examining
the edit history only to get a coarse understanding of what
was accomplished in the session, he or she can specify a
rough granularity level. A smaller granularity might be used
by a person using edit histories for macro creation in order
to have fine-grained control over operations. Users can also
adjust the granularity level, based upon the amount of expe-
rience they have had with the system.

Certain sequences of commands are more readily coalesced
into individual history panels than others. For example,
sequences of translations of a single set of objects, without
other intervening operations are represented by the same
panel, since they are equivalent to a single translation. The
same is done for rotations, scales, caret movements, and
anchor placements. Sequences of consecutive add line
commands, without any intervening caret movements, all
relate to the drawing of a single polyline and are therefore
4 of 8
compressed into a single panel. Sets of object selections,
deselections, caret movements, and anchor placements can
frequently be interpreted as setting up the arguments for a
subsequent operation. If this is so and the user-specified
granularity level permits, all these operations are
compressed into a single prologue history panel.

5. Using Histories for Undo and Redo

Editable graphical histories are useful in the specification of
undo operations. The history is a timeline that represents the
changing state of an application, and through the selection
of a history panel, the user can ask for a previous state to be
restored. The operations which are undone are saved away.
At a later time, these operations can be replayed or
discarded.

The following example illustrates the use of graphical histo-
ries for undo and redo in graphical editing. Figure 3a shows
operations represented in the history panels of Figure 3b.
Initially a single head was drawn, and this was in turn scaled
down and copied. The copy was translated to the right of the
original head. Both the original and the copy were selected
and copied, and finally the new copy (of two heads) was
translated above the other two. We would like to close and
fill the trajectories (polylines) that represent the eyes of the

heads. Although we could select each of the eye trajectories,
and invoke the close command without using graphical
histories at all, this could be tedious, especially if the
number of copies were large, and would require deselecting
other currently selected objects.
5 of 8

Add Line - 1 / 14 Add Line - 1 / 8 Add Line - 1 / 2

Translate - 0 / 2 Copy - 1 / 1 Translate - 0 / 2

(

(a)
Initially the artist restores the editor state to the scene imme-
diately after the eye was originally drawn but before any
copies were made, by selecting the epilogue of the second
panel pair in Figure 3b. The resulting editor window
appears in Figure 4a. Next the eye trajectory is selected and
closed, automatically causing the eye to be filled with the
current fill color (gray). The editor window after this step is
shown in Figure 4b. Finally, we execute a single command
which automatically redoes the operations that we had
undone, copying the head multiple times and placing the
copies as before. Figure 5a shows the illustration generated
by this process: four heads with gray eyes. The graphical
history updates itself throughout this process, and at the end
of this editing task, when Figure 5a been generated in the
editor window, the graphical history in Figure 5b appears in
the edit history window. Note that this edit history is similar
to that displayed before the undo and redo, but it now
includes a new Close Trajs panel pair, which records the
close operation on the eye trajectory. All of the subsequent
panels contain closed and filled rectangles for the eyes.
Add Line - 1 / 4 Scale - 4 / 2 Copy - 0 / 1

b)

Figure 3. Four heads. (a) The editor window.
(b) Its graphical history.

(a)

(b)

Figure 4. Undo. (a) The editor window, loaded with the
epilogue of Figure 3b, panel pair 2. (b) The editor window
after editing.
6. Implementation

The Chimera graphical editor and its graphical history
mechanism were implemented in Common LISP on HP
9000/300 series workstations. Chimera runs under the
NeWS window system, and communicates to NeWS
through a set of C and PostScript routines.

As the user edits a picture, Chimera builds up an internal
edit history containing key LISP expressions which were
called to construct the picture. These expressions can be re-
evaluated to rebuild the illustration from a check-pointed
editor scene structure. These expressions are also inter-
6 of 8
preted in the context of the scene data to build the graphical
history. The first step in building the graphical history
involves clustering together sets of history commands into
groups that can be represented by a single panel. In deter-
mining whether to add another command to a panel, the
clustering mechanism takes into account the new command,
the commands that have already been clustered in the panel,
whether the panel is a prologue or an epilogue, and a user-
chosen granularity level. Though in some cases we might be
able to compose better history panels knowing what
commands the user will execute later, lookahead is not used
in the process of creating history panels. This allows history
frames to be built concurrently with the editing process,
without constantly re-evaluating the clustering of already
constructed panels.

In the next step, the history mechanism chooses the portion
of the editor window to map to the panel being constructed.
Each editor operation that can be invoked by the user has a
corresponding function that is called when the operation is
clustered in the panel being constructed. This function
examines the scene data-structures to choose a region of
relevance to its operation. As discussed earlier in Section 3,
this region may include all selected objects, the anchor, the
caret, an object in the process of being drawn, or other enti-
ties, depending upon the operation. After suggestions have
been gathered for all operations to be represented by the
panel, the suggestions are combined with a few other
heuristics (e.g., include a landmark in the panel, and have
prologue and epilogue display the same region of the editor
window if possible) in order to choose a region to be
depicted by the panel. The display of the prologue is post-
poned until after its epilogue has been processed to allow
the system to show the same region in both.

7. Conclusions and Future Work

Graphical histories add to a user-interface a visual record of
past events. We represent this record as a set of panels,
containing a pair for each significant user-interaction event.
This visual record uses the same visual metaphors as the
interface, thus making it accessible to anyone familiar with
the rest of the system. Using this timeline as a guide, a
person can select a past system state to be restored, thereby
supporting the one-step specification of an undo operation.
After an undo operation, new operations can be performed,
followed optionally by an automatic redo of all undone
operations.

Our graphical history system differs from earlier work on
user-interface timelines in that it automatically determines
how many operations to coalesce into a single history panel.
The decision is based upon how well the commands being
considered are known to group together, and a user-speci-
fied granularity level. Unlike previous systems, ours also
builds its own history icons, based upon the operations
being performed and the system state. These customized
panels can better convey the effect of the user’s commands
given the current system state than prefabricated icons or
miniatures of the entire interface. Since panels can represent
more than one operation, they can be split into lower level
panels that show their constituent operations in more detail.

Similarly, multiple panels can be joined into a single panel
to hide this detail.

We are in the process of extending the mechanism that
determines how to split up panels, and how much detail to
7 of 8

(a)

Add Line - 1 / 14 Add Line - 1 / 8 Close Trajs - 3 / 1

Copy - 0 / 1 Translate - 0 / 2 Copy - 1 / 1
place in each. Currently our system removes detail by limit-
ing the view shown in history panels to be only the portion
of the graphical display containing relevant information. It
would also be reasonable at times to remove objects from
the panels that fall in the interesting regions of the display,
but are not relevant themselves. The problem of choosing
good landmarks is an interesting one, and deserves more
attention in our system. We are also working on an interface
which will permit the splitting and rejoining of history
panels to be viewed in such a way that the original panel
hierarchy is always clear.

A mechanism to facilitate the fast recall of old history
panels is certainly desirable. Implementing “fisheye views”
[FURN86], modulating information detail as a function of
conceptual proximity, will help with this task. More recent
events would appear in detail, distributed among a large
number of history panels. Operations performed longer ago
would be more densely packed in history panes (which can
be expanded at will). It would also be useful to permit the
retrieval of old history panels quickly through a specifica-
tion of the objects affected or operations of interest, e.g.,
through graphical search techniques [KURL88]. The ability
to ask for a history of a set of one or more particular objects
Add Line - 2 / 2 Add Line - 1 / 4 Scale - 4 / 2

Translate - 0 / 2

(b)

Figure 5. Four heads after redo.
(a) The editor window. (b) Its
graphical history.

would be a helpful feature to have in the generation of
history presentations.

In graphical editor histories, it is sometimes desirable to
show panels that contain a view taken from outside the
graphical editor scene. When the user changes a button
setting, slider value, or text-input region in an editor
control-panel, the change should be included in the graphi-
cal history as well. Extensions, such as these, that we plan to
make to our graphical history mechanism will be important
in applying editable graphical histories to more general
user-interfaces.

The undo mechanism described in this paper is referred to
as linear undo/redo in the classification scheme described
by Vitter [VITT84]. We hope to extend this mechanism so
that more than one set of possible redo operations are avail-
able at any given time. Graphical histories would mesh well
with the more robust redo facility, since a traditional prob-
lem with multiple redo options is in the presentation of the
redo choices to the user.

Graphical macros are of special interest to us, and this work
suggests one possible approach to representing them visu-
ally. A suitable visual presentation of macros is important
during both macro construction, and editing. Graphical
histories would also be useful in selecting past actions to be
encapsulated in macros, and in reviewing macros which
have been archived in a library. We are actively pursuing
research in this area.

References

[ADOB85] Adobe Systems Inc. PostScript Language
Reference Manual. MA: Addison-Wesley,
1985.

[BIER86] Bier, E., and Stone, M. “Snap-Dragging.”
Proc. SIGGRAPH ‘86. In Computer Graph-
ics, 20:4, August 1986, 233-240.

[CHRI88] Christodoulakis, S., and Graham, S. “Brows-
ing Within Time-Driven Multimedia Docu-
ments.” Proc. Conf. on Office Info. Sys.,
March 23-25, 1988, 219-227.

[FEIN82] Feiner, S., Nagy, S., and van Dam, A. “An
Experimental System for Creating and
Presenting Interactive Graphical Docu-
ments.” ACM Trans. on Graphics, 1:1 Janu-
ary 1982, 59-77.

[FEIN85] Feiner, S. “APEX: An Experiment in the
Automated Creation of Pictorial Explana-
tions.” IEEE Computer Graphics and Appli-
cations, 5:11, November 1985, 29-38.

[FURN86] Furnas, G. “Generalized Fisheye Views.”
Proc. CHI ‘86 Human Factors in Computing
Systems, Boston, April 13-17, 1986, 16-23.

[JOY79] Joy, W. An Introduction to the C Shell. In
UNIX Programmer ’s Manual, Seventh
Edition, Third Berkeley UNIX Distribution,

Dept. of EE & CS, University of California,
Berkeley, 1979.

[KURL88] Kurlander, D., and Bier, E. “Graphical
Search and Replace.” Proc. SIGGRAPH ‘88.
In Computer Graphics, 22:4, August 1988,
113-120.

[MAKK87] Makkuni, R. “A Gestural Representation of
t h e P r o c e s s o f C o m p o s i n g C h i n e se
Temples.” IEEE Comp. Graphics and
Applic., 7:12, December 1987, 45-61.

[PIER88] Pier, K., Bier, E., and Stone, M. “An Intro-
duction to Gargoyle: An Interactive Illustra-
t ion Tool.” Proc. EP88, Int. Conf. on
Electronic Publishing, Document Manipula-
tion, and Typography, April 1988, 223-238.

[SMIT78] Smith, A.R. “Paint.” NYIT Computer
Graphics Lab Technical Memo No. 7, Old
Westbury, NY, July 20, 1978. [Also available
in Beatty, J. and Booth, K. (eds.), IEEE Tuto-
rial: Computer Graphics 2nd Ed. Silver
Spring, MD: IEEE Comp. Soc. Press, 1982,
501-515.]

[STAL87] Stallman, R. GNU Emacs Manual. Sixth
Edition, Version 18, Cambridge, MA, Free
Software Foundation, March 1987.

[SWIN86] Swinehart, D., Zellweger, P., Beach, R., and
Hagmann, R. “A Structural View of the
Cedar Programming Environment.” ACM
Trans. on Progr. Lang. and Sys., 8:4, 419-
490, 1986.

[VITT84] Vitter, J. “US&R: A New Framework for
Redoing.” IEEE Software, 1:4, October
1984, 39-52.
8 of 8

	Editable Graphical Histories
	David Kurlander Steven Feiner
	Department of Computer Science Columbia University New York, NY 10027
	Abstract
	1. Introduction
	2. Basic Concepts
	3. Choosing Panel Contents
	4. Panel Granularity
	5. Using Histories for Undo and Redo
	6. Implementation
	7. Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

